1 banner__22 banner_13 banner_34 banner_45

Neurology & Neurosurgeries


Advanced Epilepsy Surgery

Epilepsy is a brain disorder in which clusters of nerve cells, or neurons, in the brain sometimes signal abnormally. Neurons normally generate electrochemical impulses that act on other neurons, glands, and muscles to produce human thoughts, feelings, and actions. In epilepsy, the normal pattern of neuronal activity becomes disturbed, causing strange sensations, emotions, and behavior, or sometimes convulsions , muscle spasms, and loss of consciousness. During a seizure, neurons may fire as many as 500 times a second, much faster than normal. In some people, this happens only occasionally; for others, it may happen up to hundreds of times a day.

For about 80 percent of those diagnosed with epilepsy, seizures can be controlled with modern medicines and surgical techniques. However, about 25 to 30 percent of people with epilepsy will continue to experience seizures even with the best available treatment. Doctors call this situation intractable epilepsy. Having a seizure does not necessarily mean that a person has epilepsy. Only when a person has had two or more seizures is he or she considered to have epilepsy.

While epilepsy cannot currently be cured, for some people it does eventually go away. One study found that children with idiopathic epilepsy, or epilepsy with an unknown cause, had a 68 to 92 percent chance of becoming seizure-free by 20 years after their diagnosis. The odds of becoming seizure-free are not as good for adults or for children with severe epilepsy syndromes, but it is nonetheless possible that seizures may decrease or even stop over time. This is more likely if the epilepsy has been well-controlled by medication or if the person has had epilepsy surgery.

Surgery Options

When seizures cannot be adequately controlled by medications, doctors may recommend that the person be evaluated for surgery. To decide if a person may benefit from surgery, doctors consider the type or types of seizures he or she has. They also take into account the brain region involved and how important that region is for everyday behavior. Surgeons usually avoid operating in areas of the brain that are necessary for speech, language, hearing, or other important abilities. Doctors may perform tests such as a Wada test (administration of the drug amobarbitol into the carotid artery) to find areas of the brain that control speech and memory. They often monitor the patient intensively prior to surgery in order to pinpoint the exact location in the brain where seizures begin. They also may use implanted electrodes to record brain activity from the surface of the brain. This yields better information than an external EEG.

Doctors generally recommend surgery only after patients have tried two or three different medications without success, or if there is an identifiable brain lesion--a damaged or dysfunctional area believed to cause the seizures.

If a person is considered a good candidate for surgery and has seizures that cannot be controlled with available medication, experts generally agree that surgery should be performed as early as possible. It can be difficult for a person who has had years of seizures to fully re-adapt to a seizure-free life if the surgery is successful. The person may never have had an opportunity to develop independence, and he or she may have had difficulties with school and work that could have been avoided with earlier treatment. Surgery should always be performed with support from rehabilitation specialists and counselors who can help the person deal with the many psychological, social, and employment issues he or she may face.

While surgery can significantly reduce or even halt seizures for some people, it is important to remember that any kind of surgery carries some amount of risk (usually small). Surgery for epilepsy does not always successfully reduce seizures and it can result in cognitive or personality changes, even in people who are excellent candidates for surgery. Patients should ask their surgeon about his or her experience, success rates, and complication rates with the procedure they are considering.

Even when surgery completely ends a person's seizures, it is important to continue taking seizure medication for some time to give the brain time to re-adapt. Doctors generally recommend medication for 2 years after a successful operation to avoid new seizures.

Surgery to treat underlying conditions

In cases where seizures are caused by a brain tumor, hydrocephalus, or other conditions that can be treated with surgery, doctors may operate to treat these underlying conditions. In many cases, once the underlying condition is successfully treated, a person's seizures will disappear as well.

Surgery to remove a seizure focus

The most common type of surgery for epilepsy is removal of a seizure focus, or small area of the brain where seizures originate. This type of surgery, which doctors may refer to as a lobectomy or lesionectomy, is appropriate only for focal seizures that originate in just one area of the brain. In general, people have a better chance of becoming seizure-free after surgery if they have a small, well-defined seizure focus. Lobectomies have a 55-70 percent success rate when the type of epilepsy and the seizure focus is well-defined. The most common type of lobectomy is a temporal lobe resection, which is performed for people with temporal lobe epilepsy. Temporal lobe resection leads to a significant reduction or complete cessation of seizures about 70 - 90 percent of the time.

Multiple subpial transection


When seizures originate in part of the brain that cannot be removed, surgeons may perform a procedure called a multiple subpial transection. In this type of operation, which has been commonly performed since 1989, surgeons make a series of cuts that are designed to prevent seizures from spreading into other parts of the brain while leaving the person's normal abilities intact. About 70 percent of patients who undergo a multiple subpial transection have satisfactory improvement in seizure control.

Corpus callosotomy


Corpus callosotomy, or severing the network of neural connections between the right and left halves, or hemispheres, of the brain, is done primarily in children with severe seizures that start in one half of the brain and spread to the other side. Corpus callosotomy can end drop attacks and other generalized seizures. However, the procedure does not stop seizures in the side of the brain where they originate, and these focal seizures may even increase after surgery.

Hemispherectomy and hemispherotomy


These procedures remove half of the brain's cortex, or outer layer. They are used predominantly in children who have seizures that do not respond to medication because of damage that involves only half the brain, as occurs with conditions such as Rasmussen's encephalitis, Sturge-Weber syndrome, and hemimegencephaly. While this type of surgery is very radical and is performed only as a last resort, children often recover very well from the procedure, and their seizures usually cease altogether. With intense rehabilitation, they often recover nearly normal abilities. Since the chance of a full recovery is best in young children, hemispherectomy should be performed as early in a child's life as possible. It is rarely performed in children older than 13.

Devices


The vagus nerve stimulator was approved by the U.S. Food and Drug Administration (FDA) in 1997 for use in people with seizures that are not well-controlled by medication. The vagus nerve stimulator is a battery-powered device that is surgically implanted under the skin of the chest, much like a pacemaker, and is attached to the vagus nerve in the lower neck. This device delivers short bursts of electrical energy to the brain via the vagus nerve. On average, this stimulation reduces seizures by about 20 - 40 percent. Patients usually cannot stop taking epilepsy medication because of the stimulator, but they often experience fewer seizures and they may be able to reduce the dose of their medication. Side effects of the vagus nerve stimulator are generally mild but may include hoarseness, ear pain, a sore throat, or nausea. Adjusting the amount of stimulation can usually eliminate most side effects, although the hoarseness typically persists. The batteries in the vagus nerve stimulator need to be replaced about once every 5 years; this requires a minor operation that can usually be performed as an outpatient procedure.

Specialists


Dr. Abhaya Kumar
Dr. Ajaya Nand Jha
Dr. Alok Gupta
Dr. Amitabh Goel
Dr. Amitabha Chanda
Dr. Anil Kansal
Dr. Annu Aggarwal
Dr. Arjun Srivatsa
Dr. Arun Saroha
Dr. Atampreet Singh
Dr. Atul Prasad
Dr. Avinash K.M
Dr. Bipin S Walia
Dr. G.R Vijay Kumar
Dr. Guruprasad Hosurkar
Dr. Jagdish Chatnalli
Dr. Jayanti Mani
Dr. JD Mukherji
Dr. Krishna K Choudhary
Dr. Mohit Bhatt
Dr. Prakash Singh
Dr. Praveen Gupta
Dr. Raghuram G
Dr. Rana Patir
Dr. Sandeep Vaishya
Dr. Vikas Gupta
Dr. A.K Sahani
Dr. Shirish Hastak
Dr. Venkataramana. K. Neelam


Copyright © 2010 - 2017 All Rights Reserved. A Shinon Collaborative Consultancy Venture.